This question paper contains 6 printed pages]

Code No.: 09(I) Roll No.....

0(CCEM)9

ELECTRICAL ENGINEERING

Paper: I

Time Allowed: 3 hours]

[Maximum Marks: 300

Note: (i) Answers must be written in English.

- (ii) Number of marks carried by each question are indicated at the end of the question.
- (iii) Part/Parts of the same question must be answered together and should not be interposed between answer to other questions.
- (iv) Each questions or part thereof should begin on a fresh page.
- (v) Your answers should be precise and coherent.
- (vi) Candidates should attempt Q. Nos. 1 and 5 which are compulsory and any three out of the remaining questions, selecting at least one question from each Section.

(vii) Notations have their usual meaning.

P. T. O.

SECTION - A

 - ALLO	swer any three of the following:				
(a)	For Ince	w dialonti-			

- (a) For lossy dielectric material having $\mu_r=1$, $\epsilon_r=48$, $\sigma=20$ S/m, calculate the attenuation constant and intrinsic impedance at a frequency of 16 GHz. 20
- (b) Discuss applications of Cathode Ray Oscilloscope in electrical measurements.
- (c) Explain how a two-winding transformer can be converted into an autotransformer. List the application of an autotransformer.
- (d) Describe the methods used for starting of 3-phase squirrel-cage induction motors.
- 2. (a) Differentiate between absolute and secondary instruments. Discuss the classification of secondary instruments with examples.20
 - (b) Describe the construction and working of dynamometer type instruments.
 - (c) A parallel plate capacitor with plate area of 5 cm² and plate separation of 3mm has a voltage 50 $\sin(10^3 \text{ t})$ volt applied to its plates. Calculate the displacement current assuming $\epsilon = 2 \; \epsilon_0$ 20

- (a) Describe the construction, working principle, advantages and disadvantages of a single phase AC energy-meter.
 - (b) A 4-pole, 3 phase, 50 Hz induction motor supplies a useful torque of 160 N-m at 5% slip, calculate
 (i) Motor speed, (ii) gross output of the motor,
 (iii) efficiency of the motor. Friction and windage losses 500 W and stator losses 1000W.
 - (c) Compare the working of a BJT with MOSFET in a tabular form.
- **4.** (a) Describe a general form of Resonant Circuit Oscillator and discuss its specific cases.
 - (b) A 110V dc shunt generator delivers a load of 50 A. The armature resistance is 0.2 Ω, and the field circuit resistance is 55 Ω. The generator rotating at a speed of 1800 r.p.m. has 6 poles, is lap wound and has a total of 600 conductors. Calculate (i) the no load voltage at the armature, and (ii) the flux per pole.
 - (c) The resistors used in the bridge circuit of a Wien bridge Oscillator are 50 K Ω each. If the capacitors are changed from 500 pF to 1000 pF, between what limit does the frequency generated varies. 20

SECTION - B

(a) Discuss ideal voltage and current-sources.

20

5. Answer any *three* of the following:

(b) Discuss different types of Flip- Flop (FF) o	r				
bistable multivibrators.	0				
(c) Discuss torque-slip characteristics of a	n				
induction-motor with increasing value of roto	r				
resistance.	0				
(d) What are (i) Discrete Fourier Transform(DFT)	What are (i) Discrete Fourier Transform(DFT),				
(ii) Inverse Discrete Fourier Transform (IDFT)),				
and (iii) What are the advantages of Fast Fourie	er				
Transform (FFT).	0				
(a) Find the magnetic field intensity at a point (r, φ, z)	(2)				
due to an infinitely long straight filament carrying	g				
a current I in the +z direction.	0				
(b) The following test data obtained on a 5 KVA	4				
220/400 V single phase transformer.					
O. C. test: 220V, 2A, 100W (on LV side)					
S. C. test: 40 V,11.4 A, 200W (on HV side)					
Determine the percentage efficiency and					
regulation at full load 0.9 p.f. lagging.	U				

- (c) What are the main current components in a p-n diode and under what conditions do they become important?
- 7. (a) Explain the need for conducting Sumpner's or back to back test. With the help of neat diagram, discuss Sumpner's test.
 - (b) Find the Laplace transform of the signal $e^{-a|t|}$. 20
 - (c) Calculate phase e.m.f. induced in a 4-pole, 3-phase, 50 Hz star connected alternator with 36 slots, and 30 conductors per slots. The flux per pole is 0.05 wb. Assume winding factor of 0.95. 20
- 8. (a) Find the current in the $10~\Omega$ resistance of the circuit shown in Fig.-1 using Thevenin's theorem and confirm the result by Norton's theorem.

(5)

P. T. O.

(b) A transistor has an $\alpha_o = 0.98$ and the alpha cut-off frequency (f_α) is 5 MHz. Find the β cut-off frequency and the value of β at this frequency. Also determine α and β at a frequency of 1 MHz.

20

(c) The coil of a 250V moving iron voltmeter has a resistance of 500Ω , and an inductance of 1 Henry. The current taken by the instrument, when placed on 250 V dc supply is 0.05 A. Determine the percentage error, when the instrument is placed on 250V ac supply at 100 Hz.

300