- (a) A particle moves in a straight line with constant acceleration.
   During the first second of observation it moves 17m and during the next two seconds it moves 52m. Find its acceleration and initial velocity.
   20
  - (b) A particle moving in a straight line with S.H.M. has velocities u and ν, when its distances from the centre are 'a' and 'b'

respectively. Prove that the period of motion is  $\,2\pi\,\sqrt{\frac{a^2-b^2}{v^2-u^2}}$  .

20

- (c) A body is projected upwards with a velocity of 60 ms<sup>-1</sup> at an angle of 30° with the horizontal. Find (i) time of flight (ii) horizontal range and (iii) maximum height attained by the body.
- 11. (a) Three forces acting on a particle are in equilibrium. The angle between 1st and 1Ind is 105° and that between 1Ind and 1IIrd is 120°. Find the ratio of forces.
   30
  - (b) A body of weight 60 kg rests on a rough horizontal plane whose coefficient of friction is 1/4, find the least horizontal force required to move the body.
- 12. (a) Define Christoffel symbols of first and second kind and show that, if  $g_{ij}=0$  for  $i \neq j$  then  $\begin{cases} k \\ ij \end{cases} = 0$ , whenever  $i \neq j \neq k$ . Here  $g_{ij}$  are components of covarient tensor.
  - (b) Define Frenet's Frame. If c:  $(a,b) \to \mathbb{R}^3$  is a strongly regular curve and  $\{T(t), N(t), B(t)\}$  is Frenet's Frame at point  $t \in (a,b)$

then show that  $B = \frac{C' \times C''}{\|C' \times C''\|}$  and  $N = B \times T$ .

Roll No. ....

Total No. of Pages: 4

## 1(CCEM)0

## **Mathematics**

(15)

## Paper-I

Time: Three Hours]

[Maximum Marks: 300

Note: (i) Answers must be written in English.

- (ii) Number of marks carried by each question are indicated at the end of the question.
- (iii) Part/Parts of the same question must be answered together and should not be interposed between answers to other questions.
- (iv) The answer to each question or Part thereof should begin on a fresh page.
- (v) Your answers should be precise and coherent.
- (vi) Attempt any five questions. Question No. 1 is compulsory.
- (vii) If you encounter any typographical error, please read it as it appears in the text-book.
- 1. (a) Let S={t<sup>3</sup>+t<sup>2</sup>-2t+1, t<sup>2</sup>+1, t<sup>3</sup>-2t, 2t<sup>3</sup>+3t<sup>2</sup>-4t+3} and let W=L (S) be the linear span of S. Find basis and dimension of W. Also show that linear span of any set is a vector space. 30
  - (b) If  $W_1$  and  $W_2$  are two subspaces of a vector space V then show that dim.  $(W_1+W_2)$ =dim.  $W_1$ +dim.  $W_2$ -dim. $(W_1 \cap W_2)$  30
- 2. (a) Find basis for the null space of the following matrix 'A'. 30

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & 3 & 2 & 0 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$$

(b) Reduce the quadratic form: 30
4x²+y²-8z²+4xy-4xz+8yz to the diagonal form by an orthogonal transformation of co-ordinates.

30

- $\log(x+h) = \log x + \frac{h}{x} \frac{h^2}{2x^2} + \dots + (-1)^{n-1} \frac{h^n}{n(x+\theta h)^n}$ 
  - (b) Using Taylor's Theorem find approximate value of  $\log [(1.03)^{1/3} + (0.98)^{1/4} 1]$  30
- 4. (a) If  $u = (x^2+y^2+z^2)^{-1/2}$ , show that  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$  30
- (b) If  $z=\tan^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ , show that:

(a) Prove that:

$$x.\left(\frac{\partial z}{\partial x}\right) + y.\left(\frac{\partial z}{\partial y}\right) = \frac{1}{4}\sin 2z$$

5. (a) Discuss the continuity of the function:

$$f(x) = \begin{cases} (x-a)\sin\frac{1}{(x-a)} & ; x \neq a \\ k \in \mathbb{R} & ; x = a \end{cases}$$

- (b) Show that  $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$  does not exist. 20
- (c) Discuss the applicability of L.M.V. Theorem to the function f(x)=x(x-1) (x-2) in [0,1/2]
- 6. (a) Find the particular Integral of  $(D^2+9)$ .  $y = x \cos x$  30

(b) Solve the differential equation :

$$xdy - ydx - \sqrt{x^2 - y^2}dx = 0$$

7. (a) If  $y=\sin^{-1} x$  prove that

$$(1-x^2).y_{n+2} - (2x+1)y_{n+1}x - x^2y_n = 0$$
 20

(b) If  $y = \left[x + \sqrt{x^2 + 1}\right]^n$ , prove that

$$(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - n^2y = 0$$
 20

- (c) Solve the Diff. Eq.  $\sin y \frac{dy}{dx} = \cos y(1-x \cos y)$  20
- 3. (a) Find asymptotes to the curve

$$y^3 + x^2y + 2xy^2 + y + 1 = 0$$
 20

- (b) Find the curvature of the curve x=4 cost & y=3 sint. Also find the points on the curve where it has maximum value. 20
- (c) Find the area enclosed by the parabola  $y=x^2$  and line y=x+2.
- 9. (a) Prove that a necessary and sufficient condition for a vector

function 
$$\overrightarrow{f(t)}$$
 to have constant direction is  $\overrightarrow{f(t)} \times \frac{d \overrightarrow{f(t)}}{dt} = 0$ 

20

(b) If  $\vec{f}(x,y,z) = y\hat{i} + (x-2xz)\hat{j} - xy\hat{k}$ ,

Evaluate  $\int (\nabla \times \vec{f}) \cdot \hat{n} dS$ , where S is the portion of sphere  $x^2+y^2+z^2=1$  above xy-plane.

(c) Prove that div. (f  $\nabla$  g) – div.(g  $\nabla$  f)= f  $\nabla$ <sup>2</sup> g – g  $\nabla$ <sup>2</sup> f. 20