1(CCE.M)3

Mathematics-I/
 (15)

Time : Three Hours]
[Maximum Marks : 300

INSTRUCTIONS

(i) Answers must be written in English.
(ii) The number of marks carried by each question is indicated at the end of the question.
(iii) The answer to each question or part thereof should begin on a fresh page.
(iv) Your answer should be precise and coherent.
(v) The part/parts of the same question must be answered together and should not be interposed between answers to other questions.
(vi) Candidates should attempt any five questions out of twelve questions.
(vii) If you encounter any typographical error, please read it as it appears in the text-book.
(viii) Candidates are in their own interest advised to go through the General Instructions on the back side of the title page of the Answer Script for strict adherence.
(ix) No continuation sheets shall be provided to any candidate under any circumstances.
(x) Candidates shall put a cross (x) on blank pages of Answer Script.
(b) Verify Rolle's theorem for the function :

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\log \left[\frac{\mathrm{x}^{2}+\mathrm{ab}}{\mathrm{x}(\mathrm{a}+\mathrm{b})}\right] \text { in }[\mathrm{a}, \mathrm{~b}], 0 \notin[\mathrm{a}, \mathrm{~b}] . \tag{20}
\end{equation*}
$$

(c) Evaluate :

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}}-\cot ^{2} x\right] . \tag{20}
\end{equation*}
$$

4. (a) Assuming the possibility of expansion, show that

$$
\begin{equation*}
e^{a x} \sin b x=b x+a b x^{2}+\frac{b\left(3 a^{2}-b^{2}\right)}{3!} x^{3}+\ldots \ldots \ldots \tag{20}
\end{equation*}
$$

(b) Find all the asymptotes of the curve

$$
\begin{equation*}
x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0 \tag{20}
\end{equation*}
$$

(c) If u is a homogeneous function of degree " n " in x and y show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$.
5. (a) Trace the curve $\mathrm{r}=\mathrm{a} \sin 3 \theta$.
(b) Find the area of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(c) Find the volume of the solid formed by revolving one arch of the cycloid, $\mathrm{x}=\mathrm{a}(\theta-\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$ about the x -axis.
6. (a) Derive the equation of a plane passing through three non-collinear points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$.
(b) Show that the plane $2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ and find the point of contact.
(xi) No blank page be left in between answer to various questions.
(xii) No programmable Calculator is allowed.
(xiii) No stencil (with different markings) is allowed.

1. (a) Show that the set $V=\{a+b \sqrt{2} \mid a, b \in Q\}$ is a vectorspace over the field of rationals under the operations of usual addition and scalar multiplication.
(b) If S and T are subspaces of a finite dimensional vectorspace V , show that $\operatorname{dim} \mathrm{S}+\operatorname{dim} \mathrm{T}=\operatorname{dim}(\mathrm{S} \cap \mathrm{T})+\operatorname{dim}(\mathrm{S}+\mathrm{T})$.
(c) If T is a mapping from $\mathrm{V}_{2}(\mathbb{R})$ to $\mathrm{V}_{2}(\mathbb{R})$ defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x} \cos \theta-\mathrm{y} \sin \theta, \mathrm{x} \sin \theta+\mathrm{y} \cos \theta)$ then show that " T " is a linear transformation.

20
2. (a) Find all eigenvalues and corresponding eigenvectors of the matrix $\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$.
(b) Find the rank of the matrix :

$$
\left[\begin{array}{ccccc}
1 & 3 & 1 & -2 & -3 \tag{20}\\
1 & 4 & 3 & -1 & -4 \\
2 & 3 & -4 & -7 & -3 \\
3 & 8 & 1 & -7 & -8
\end{array}\right]
$$

(c) Determine whether $q(x, y, z)=x^{2}+2 y^{2}-4 x z-4 y z+7 z^{2}$ is a postive definite quadratic form.
3. (a) Discuss the differentiability of the function
$f(x)=\left\{\begin{array}{cl}x^{2} \sin \frac{1}{x} & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{array}\right.$ at $x=0$.

