1(CCE.M)3

Electrical Engineering-II
 (09)

Time : Three Hours]
[Maximum Marks : 300

INSTRUCTIONS

(i) Answers must be written in English.
(ii) The number of marks carried by each question is indicated at the end of the question.
(iii) The answer to each question or part thereof should begin on a fresh page.
(iv) Your answer should be precise and coherent.
(v) The part/parts of the same question must be answered together and should not be interposed between answers to other questions.
(vi) Candidates should attempt Section-A and B or Section-A and C. Q.No. 1 of Section-A is compulsory. Candidates should attempt one more question from Section-A and any three more questions from Section-B or C.
(vii) If you encounter any typographical error, please read it as it appears in the text-book.
(viii) Candidates are in their own interest advised to go through the General Instructions on the back side of the title page of the Answer Script for strict adherence.
(ix) No continuation sheets shall be provided to any candidate under any circumstances.

SECTION-C

8. (a) What is power spectral density ? Derive an expression for power spectral density. What is the effect of transfer function on power spectral density ?
(b) State and explain convolution theorem.
(c) Discuss various properties of Fourier transform of signals.
9. (a) Estimate B_{FM} and B_{PM} for modulating signal $\mathrm{m}(\mathrm{t})$ which is shown in figure below for $\mathrm{k}_{\mathrm{f}}=2 \pi \times 10^{5}, \mathrm{k}_{\mathrm{p}}=5 \pi$.

20

(b) Draw a neat sketch showing constructional features of a cavity magnetron and explain why magnetron is called cross field device.

20
(c) With suitable diagrams, explain various types of microwave strip lines.

20
10. (a) What are different techniques of measuring radiation pattern? Explain at least two techniques in detail.
(b) Sketch the circuit of difference amplifier. Derive the expression for V_{o}. Explain the principle.
(c) Discuss the following applications of OPAMP :
(i) Inverting amplifier
(ii) Integrator.

SECTION-B

4. (a) Explain why starter is necessary for a 3-phase induction motor. How Y/ Δ starter is used to reduce starting current ?
(b) A 3-phase, $200 \mathrm{HP}, 3300-\mathrm{V}, \mathrm{Y}$-connected induction motor has following parameters :

$$
\mathrm{R}_{1}=\mathrm{R}_{2}^{\prime}=0.8 \Omega, \quad \mathrm{X}_{1}=\mathrm{X}_{2}^{\prime}=3.5 \Omega
$$

Calculate slip at full load, if friction and windage loss is 3 kW . How much extra stator resistance would be necessary to increase slip to 3 times this value with full load torque maintained ?
(c) Define armature reaction applied to synchronous generators. What is the effect of pf on armature reaction? Explain. 20
5. (a) Draw the circuit diagram used for the conduct of slip test. Explain the procedure to conduct slip test.
(b) A 3-phase, 8-pole, $50 \mathrm{~Hz}, 6600 \mathrm{~V}, \mathrm{Y}$-connected synchronous motor has a synchronous impedance of $(0.66+j 6.6) \Omega / \mathrm{ph}$. When excited to give an emf of $4500 \mathrm{~V} / \mathrm{ph}$, it takes an input of 2500 kW at unity power factor. Calculate the electromagnetic torque, input current and load angle.
(c) Explain the effect of variation of excitation for a synchronous motor with its load on shaft unaltered. Use phasor diagram for drawing inferences.
(x) Candidates shall put a cross (x) on blank pages of Answer Script.
(xi) No blank page be left in between answer to various questions.
(xii) No programmable Calculator is allowed.
(xiii) No stencil (with different markings) is allowed.

SECTION-A

1. Answer any three :
(a) Sketch connections between different components of ac position control system. Derive $\frac{\theta_{\mathrm{C}}(\mathrm{s})}{\theta_{\mathrm{R}}(\mathrm{s})}$ for an ac position control system.
(b) Consider following feedback control system :

Evaluate sensitivity for variations in k .
(c) Given the following circuit sketch the output voltage waveform.

Derive expression for o / p voltage.

11. (a) How does a phase locked loop demodulate FM signal with the help of a phase discriminator ? Describe with the help of an equivalent diagram.
(b) What is the capture area of an antenna whose directive gain at 20 GHz is 15 dB ?
(c) A sinusoidal carrier of 100 MHz is 40% amplitude modulated (double side) by a sinusoidal message of 1 kHz . What is the percentage increase in (i) total power of the signal and (ii) bandwidth of the signal ?

