(b) A TV repairman finds that the time spent on his job has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they come in, and if the arrival of sets is approximately Poisson with an average of 10 per 8 hour day, what is the repairman's expected idle time each day ? How many jobs are ahead of the average set just brought in ?
(c) Determine the optimal sequence of jobs which minimizes the total elapsed time based on the following information.

Processing time on the machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$:

Job	A_{i}	B_{i}	C_{i}
1	3	3	5
2	8	4	8
3	7	2	10
4	5	1	7
5	2	5	6

(c) The following table gives the wholesale price index (x) and the index of agricultural production (y) for a period of 5 years :

x	100	104	102	103	106
y	111	109	113	107	110

Draw the scatter diagram and find the coefficient of correlation between x and y .
14. (a) Let X be a binomial random variable with parameters n and p . Then prove that

$$
\begin{equation*}
\mathrm{E}(\mathrm{X})=\mathrm{np} \tag{20}
\end{equation*}
$$

and $\operatorname{var}(X)=n p q, p+q=1$
(b) (i) Three coins are tossed. Find the probability distribution of the number of heads.
(ii) Consider the experiment of tossing a coin till a head appears for the first time. Let X be the number of tosses required. Find the distribution of X .
(c) Define hypergeometric distribution.
(i) A box contains 10 screws out of which 3 are defective. Two screws are taken at random from the box. Find the distribution of the number of defective screws drawn.
(ii) Four cards are taken from a well shuffled pack of 52 cards. What is the probability that (I) 2 are black and 2 are red (II) there is no black card ?
(b) Prove that in a metric space every convergent sequence is Cauchy. Is the converse true ? Justify.
(c) Consider the set \mathbb{R} of all reals with usual metric and define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$. Show that f is continuous, but not uniformly continuous.

SECTION—B

9. (a) Find a real root of the equation $\mathrm{x}^{3}-\mathrm{x}-11=0$ correct to two decimal places using bisection method.
(b) Find a real root of the equation $x^{3}-2 x-5=0$ correct to two decimal places using regula falsi method.
(c) Prove that the Newton-Raphson method for finding root of the equation $f(x)=0$ has a quadratic convergence.
10. (a) The data below gives the values of $\tan \mathrm{x}$ for $0.10 \leq \mathrm{x} \leq 0.30$:

x	$:$	0.10	0.15	0.20	0.25
$y=\tan x:$	0.1003	0.1511	0.2027	0.2553	0.3093

Using Newton's forward difference interpolation formula find $\tan 0.12$.
(b) Estimate the value of the integral $\int_{1}^{3} \frac{1}{\mathrm{x}} \mathrm{dx}$ by Simpson's rule with 4 sub intervals. Determine the error by direct integration
(c) Use the Runge-Kutta fourth order method to find $y(1)$ given that $y(0)=1$ and that $\frac{d y}{d x}=\frac{y-x}{y+x}$.
(b) State and prove Cauchy's Integral formula.
(c) Evaluate the following integrals :
(i) where C is the circle $|\mathrm{z}|=1$.
(ii) $\int_{\mathrm{C}} \frac{1}{\mathrm{z}^{2}+4} \mathrm{dz}$ where C is the circle $|\mathrm{z}-\mathrm{i}|=2$.
6. (a) (i) Eliminate the arbitrary function F from the equation $z=x+y+F(x y)$ and find the corresponding p.d.e.
(ii) Eliminate the parameters a and b from the equation $2 \mathrm{z}=(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b}$ and find the p.d.e.

20
(b) Show that $\mathrm{z}=\mathrm{ax}+(\mathrm{y} / \mathrm{a})+\mathrm{b}$ is a complete integral of $\mathrm{pq}=1$. This problem has no singular integral. Find the particular solution corresponding to the sub-family $\mathrm{b}=\mathrm{a}$. 20
(c) Find a complete integral of the p.d.e. $f=\left(p^{2}+q^{2}\right) y-q z=0$ by Charpit's method.
7. (a) Show that the set of all integers is a ring with respect to usual addition and multiplication of integers. Is the ring commutative ? Justify.
(b) Define an ideal in a ring. Show that the set $3 \mathbb{Z}$ of all multiples of 3 is an ideal of the ring of integers.
(c) Prove that a finite integral domain is a field. Give an example of an infinite integral domain that is not a field.
8. (a) Let \mathbb{R} be a set of all reals and $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by $d(x, y)=|x-y|$ for $(x, y) \in \mathbb{R} \times \mathbb{R}$. Show that d is a metric on \mathbb{R}. Find the open sphere centered at 2 and radius 1 in this metric space.
12. (a) Prove that under the three conditions of a Poisson process, the number of units serviced in a fixed time also follows the Poisson Law.
(b) If for a period of 2 hours in a day say 8 to 10 a.m., trains arrive at the yard every 20 minutes but the service time continues to remain 36 minutes, then calculate for this period :
(i) the probability that the yard is empty.
(ii) average queue length on the assumption that the line capacity of the yard is limited to 4 trains only.
(c) Find the sequence that minimizes the total elapsed time required to complete the following jobs :

	Processing time in hours					
No. of job	1	2	3	4	5	6
Machine A	4	8	3	6	7	5
Machine B	6	3	7	2	8	4

13. (a) Explain the method of construction of :
(i) subdivided bar diagram
(ii) percentage bar diagram
(iii) pie chart

Indicate the situations where they are useful.
(b) (I) What is the probability of getting :
(i) exactly two heads in tossing 3 coins ?
(ii) at least two heads in tossing 3 coins ?
(II) Find the probability that the sum of the numbers shown in the two faces, when two dice are thrown :
(i) is 7 and
(ii) is 10 .
(xii) No programmable Calculator is allowed.
(xiii) No stencil (with different markings) is allowed.

SECTION-A

1. (a) Prove that every group is isomorphic to a permutation group.
(b) Show that the set of integers \mathbb{Z} is a group with respect to usual addition. Is this group cyclic ? Justify your answer.
(c) Express the following permutations as a product of disjoint cycles and determine whether they are even or odd permutations :
(i) $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 1 & 6 & 4 & 3\end{array}\right)$
(ii) $\quad\left(\begin{array}{llll}4 & 2 & 1 & 5\end{array}\right)\left(\begin{array}{llll}3 & 4 & 2 & 6\end{array}\right)\left(\begin{array}{llll}5 & 6 & 7 & 1\end{array}\right)$
2. (a) Suppose I and J are two ideals in a ring R. Prove that I $\cap \mathrm{J}$ is an ideal in R. Show by an example that union of two ideals of a ring may not be an ideal of the ring.
(b) Define a Unique Factorization Domain (UFD). Show that \mathbb{Z} is α UFD. Give an example of an integral domain that is not UFD.
(c) Prove that every field is an integral domain. Is the converse true ? Justify your answer.
3. (a) Let X be an arbitrary non empty set and define $d(x, y)=\left\{\begin{array}{ll}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{array}\right.$.
4. (a) Solve the following 1.p.p. by Simplex method :

Max. $z=3 x_{1}+5 x_{2}+4 x_{3}$
such that $2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 8$

$$
\begin{align*}
3 x_{1}+2 x_{2}+4 x_{3} & \leq 15 \\
2 x_{2}+5 x_{3} & \leq 10 \\
x_{1}, x_{2}, x_{3} & \geq 0 \tag{20}
\end{align*}
$$

(b) Solve the following transportation problem :

	D_{1}	D_{2}	D_{3}	a_{i}
O_{1}	7	3	3	4
O_{2}	3	1	4	1
O_{3}	4	3	6	5
$\mathrm{~b}_{\mathrm{j}}$	2	3	5	

(c) Solve the following minimal assignment problem :

JoblMan	I	II	III	IV
A	2	3	4	5
B	4	5	6	7
C	7	8	9	8
D	3	5	8	4

16. (a) Prove that if T , the time between two successive arrivals, is a random variable, then it follows an exponential distribution with parameter λ, where the arrival pattern follows a Poisson process.
