- (b) Give Orgel diagrams for $[Cu(H_2O)_6]^{2+}$ and $[Ni(H_2O)_6]^{2+}$ complexes and indicate the possible electronic d-d transitions. 25
- 10. (a) State and explain the third law of thermodynamics. 25
 - (b) Explain the evaluation of absolute entropy of gases at 1 atmospheric pressure and 25°C. 25

Roll No.

1(CCEM)0
Chemistry
(05)
Paper—I

Time : Three Hours]

[Maximum Marks : 300

- **Note** :-- (i) Answers must be written in English.
 - (ii) Number of marks carried by each question are indicated at the end of the question.
 - (iii) Part/Parts of the same question must be answered together and should not be interposed between answers to other questions.
 - (iv) The answer to each question or part thereof should begin on a fresh page.
 - (v) Your answers should be precise and coherent.
 - (vi) Candidates should attempt Question No. 1 which is compulsory and any **four** out of the remaining questions.
 - (vii) If you encounter any typographical error, please read it as it appears in the text-book.

SECTION-A

1. (a)	Derive the normalised wave function expression for particle in	
	a one dimensional box.	10
(b)	Explain the nature of ψ and ψ^2 .	10
(c)	Derive the Gibbs-Helmoltz equation and explain the ter	rms in it.
		10
(d)	Sketch the Schottky and Frenkel defects in crystals.	10
(e)	In a first order reaction $A \rightarrow$ products under what co	nditions
	the rate of reaction is equal to rate constant ?	10
CBC-1659	7 1	Contd.

4

- (f) What is liquid junction potential and how is it eliminated ?10
- (g) What are photoelectric cells ? Illustrate with one example.10
- (h) Write the ionization of liquid SO₂ and explain an example of oxidation-reduction reaction in it.
- (i) Explain Lanthanide contraction. 10
- (j) Give the d orbital splitting in square planar complex. 10
- (a) Write the Schrodinger wave equation for hydrogen atom in spherical polar co-ordinates and discuss its solutions. 25
 - (b) Give the MOEDs of NO and CO molecules and explain their bond orders and magnetic properties. 25
- (a) Derive the expression for maximum work in isothermal reversible expansion of ideal gases. 25
 - (b) Derive the relationship between C_p and C_v for n moles of ideal gas.
 - (c) 280 grams of nitrogen absorbed 100 cals of heat without change in volume. The temperature of N_2 gas increased from 30°C to 32°C. Calculate the molar heat capacity (C_y). 10
- 4. (a) Derive Bragg's equation and its use in crystal structure determination. 25
 - (b) What are liquid crystals ? How many types of liquid crystals are there ? Give one example each and mention any two properties and applications of liquid crystals. 25
- 5. (a) Derive the rate equation for first order reactions and show that $t_{_{1/2}}$ is independent of initial concentration. 25
 - (b) What are the limitations of Collision theory ? 10
 - (c) Explain the theory of absolute reaction rates. 15

- 6. (a) Explain the Debye-Huckel theory of strong electrolytes. 25
 - (b) What are fuel cells ? Explain their important features taking any two examples.25
- 7. (a) State and explain the fundamental laws of photochemistry.

15

- (b) What is quantum yield ? How is it determined experimentally ? 15
- (c) In photochemical reaction $H_2 + Cl_2 \rightarrow 2HCl$, 2×10^{-10} moles of Cl_2 is converted to HCl with light of $\lambda = 4000$ Å. What is the quantum yield of reaction if light energy absorbed is 7.16×10^{-15} k cals. 20
- 8. (a) Discuss the colour property and magnetic property of tripositive lanthanide ions. 20
 - (b) Write the separation of trivalent lanthanide ions by ion-exchange method. 20
 - (c) Write :
 - (i) neutralization reaction and
 - (ii) precipitation reaction in liq. NH_3 . 10
- 9. (a) Calculate the CFSE and spin only magnetic moment of complexes :
 - (i) $[Fe(H_2O)_6]^{2+}$
 - (ii) $[Fe(CN)_6]^{3-}$
 - (iii) $[Mn(H_2O)_6]^{2+}$
 - (iv) $[\operatorname{Co}\operatorname{Cl}_4]^{2-}$ and
 - (v) $\left[Co(NH_3)_6 \right]^{3+}$.

CBC-16597

Contd.

25